An engine or motor is a machine designed to convert energy into useful mechanical motion.[1][2] Heat engines, including internal combustion engines and external combustion engines (such as steam engines) burn a fuel to create heat which is then used to create motion. Electric motors convert electrical energy into mechanical motion, pneumatic motors use compressed air and others, such as clockwork motors in wind-up toys use elastic energy. In biological systems, molecular motors like myosins in muscles use chemical energy to create motion.
Heat engine
Combustion engine
Combustion engines are heat engines driven by the heat of a combustion process.
Internal combustion engine
External combustion engine
"Combustion" refers to burning fuel with an oxidizer, to supply the heat. Engines of similar (or even identical) configuration and operation may use a supply of heat from other sources such as nuclear, solar, geothermal or exothermic reactions not involving combustion; but are not then strictly classed as external combustion engines, but as external thermal engines.
The working fluid can be a gas as in a Stirling engine, or steam as in a steam engine or an organic liquid such as n-pentane in an Organic Rankine cycle. The fluid can be of any composition; gas is by far the most common, although even single-phase liquid is sometimes used. In the case of the steam engine, the fluid changes phases between liquid and gas...
Air-breathing combustion engines
Air-breathing engines are combustion engines that use the oxygen in atmospheric air to oxidise ('burn') the fuel carried, rather than carrying an oxidiser, as in a rocket. Theoretically, this should result in a better specific impulse than for rocket engines.
A continuous stream of air flows through the Air-breathing engine. This air is compressed, mixed with fuel, ignited and expelled as the exhaust gas.
Environmental effects
The operation of engines typically has a negative impact upon air quality and ambient sound levels. There has been a growing emphasis on the pollution producing features of automotive power systems. This has created new interest in alternate power sources and internal-combustion engine refinements. Although a few limited-production battery-powered electric vehicles have appeared, they have not proved to be competitive owing to costs and operating characteristics. In the 21st century the diesel engine has been increasing in popularity with automobile owners. However, the gasoline engine, with its new emission-control devices to improve emission performance, has not yet been significantly challenged.
Air quality
Exhaust from a spark ignition engine consists of the following: nitrogen 70 to 75% (by volume), water vapor 10 to 12%, carbon dioxide 10 to 13.5%, hydrogen 0.5 to 2%, oxygen 0.2 to 2%, carbon monoxide: 0.1 to 6%, unburnt hydrocarbons and partial oxidation products (e.g. aldehydes) 0.5 to 1%, nitrogen monoxide 0.01 to 0.4%, nitrous oxide <100 ppm, sulfur dioxide 15 to 60 ppm, traces of other compounds such as fuel additives and lubricants, also halogen and metallic compounds, and other particles.[14] Carbon monoxide is highly toxic, and can cause carbon monoxide poisoning, so it is important to avoid any build-up of the gas in a confined space. Catalytic converters can reduce toxic emissions, but not completely eliminate them. Also, resulting greenhouse gas emissions, chiefly carbon dioxide, from the widespread use of engines in the modern industrialized world is contributing to the global greenhouse effect – a primary concern regarding global warming.
Noncombustive heat engines
Nonthermal chemically powered motor
Nonthermal motors usually are powered by a chemical reaction, but are not heat engines. Examples include:
Electric motor
The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.
To reduce the electric energy consumption from motors and their associated carbon footprints, various regulatory authorities in many countries have introduced and implemented legislation to encourage the manufacture and use of higher efficiency electric motors. A well-designed motor can convert over 90% of its input energy into useful power for decades.[15] When the efficiency of a motor is raised by even a few percentage points, the savings, in kilowatt hours (and therefore in cost), are enormous. The electrical energy efficiency of a typical industrial induction motor can be improved by: 1) reducing the electrical losses in the stator windings (e.g., by increasing the cross-sectional area of the conductor, improving the winding technique, and using materials with higher electrical conductivities, such as copper), 2) reducing the electrical losses in the rotor coil or casting (e.g., by using materials with higher electrical conductivities, such as copper), 3) reducing magnetic losses by using better quality magnetic steel, 4) improving the aerodynamics of motors to reduce mechanical windage losses, 5) improving bearings to reduce friction losses, and 6) minimizing manufacturing tolerances. For further discussion on this subject, see Premium efficiency and Copper in energy efficient motors.)
By convention, electric engine refers to a railroad electric locomotive, rather than an electric motor.
Physically powered motor
Some motors are powered by potential energy, for example some funiculars, gravity plane and ropeway conveyors have used potential energy of water or rocks, and some clocks have a weight that falls under gravity. Other forms of potential energy include compressed gases (such as pneumatic motors), springs (clockwork motors) and elastic bands.
Historic military siege engines included large catapults, trebuchets, and (to some extent) battering rams were powered by potential energy.
Pneumatic motor
Hydraulic motor
Sound levels
In the case of sound levels, engine operation is of greatest impact with respect to mobile sources such as automobiles and trucks. Engine noise is a particularly large component of mobile source noise for vehicles operating at lower speeds, where aerodynamic and tire noise is less significant.[17] Petrol and diesel engines are fitted with mufflers (silencers) to reduce noise.
Efficiency
The energy of traditional heat engine, doing work only one-dimensional in three-dimensional thermal motion, mechanics, 1/3, so the efficiency of heat engine, usually 1/3, 33% = η, the rest of the 2-D, 66%, as uselessthe heat is wasted.[18][19]
Heat engine
Combustion engine
Combustion engines are heat engines driven by the heat of a combustion process.
Internal combustion engine
Main article: Internal Combustion Engine
The internal combustion engine is an engine in which the combustion of a fuel (generally, fossil fuel) occurs with an oxidizer (usually air) in a combustion chamber. In an internal combustion engine the expansion of the high temperature and high pressure gases, which are produced by the combustion, directly applies force to components of the engine, such as the pistons or turbine blades or a nozzle, and by moving it over a distance, generates useful mechanical energy.[9][10][11][12]External combustion engine
Main article: external combustion engine
An external combustion engine (EC engine) is a heat engine where an internal working fluid is heated by combustion of an external source, through the engine wall or a heat exchanger. The fluid then, by expanding and acting on the mechanism of the engine produces motion and usable work.[13] The fluid is then cooled, compressed and reused (closed cycle), or (less commonly) dumped, and cool fluid pulled in (open cycle air engine)."Combustion" refers to burning fuel with an oxidizer, to supply the heat. Engines of similar (or even identical) configuration and operation may use a supply of heat from other sources such as nuclear, solar, geothermal or exothermic reactions not involving combustion; but are not then strictly classed as external combustion engines, but as external thermal engines.
The working fluid can be a gas as in a Stirling engine, or steam as in a steam engine or an organic liquid such as n-pentane in an Organic Rankine cycle. The fluid can be of any composition; gas is by far the most common, although even single-phase liquid is sometimes used. In the case of the steam engine, the fluid changes phases between liquid and gas...
Air-breathing combustion engines
Air-breathing engines are combustion engines that use the oxygen in atmospheric air to oxidise ('burn') the fuel carried, rather than carrying an oxidiser, as in a rocket. Theoretically, this should result in a better specific impulse than for rocket engines.
A continuous stream of air flows through the Air-breathing engine. This air is compressed, mixed with fuel, ignited and expelled as the exhaust gas.
- Examples
Environmental effects
The operation of engines typically has a negative impact upon air quality and ambient sound levels. There has been a growing emphasis on the pollution producing features of automotive power systems. This has created new interest in alternate power sources and internal-combustion engine refinements. Although a few limited-production battery-powered electric vehicles have appeared, they have not proved to be competitive owing to costs and operating characteristics. In the 21st century the diesel engine has been increasing in popularity with automobile owners. However, the gasoline engine, with its new emission-control devices to improve emission performance, has not yet been significantly challenged.
Air quality
Exhaust from a spark ignition engine consists of the following: nitrogen 70 to 75% (by volume), water vapor 10 to 12%, carbon dioxide 10 to 13.5%, hydrogen 0.5 to 2%, oxygen 0.2 to 2%, carbon monoxide: 0.1 to 6%, unburnt hydrocarbons and partial oxidation products (e.g. aldehydes) 0.5 to 1%, nitrogen monoxide 0.01 to 0.4%, nitrous oxide <100 ppm, sulfur dioxide 15 to 60 ppm, traces of other compounds such as fuel additives and lubricants, also halogen and metallic compounds, and other particles.[14] Carbon monoxide is highly toxic, and can cause carbon monoxide poisoning, so it is important to avoid any build-up of the gas in a confined space. Catalytic converters can reduce toxic emissions, but not completely eliminate them. Also, resulting greenhouse gas emissions, chiefly carbon dioxide, from the widespread use of engines in the modern industrialized world is contributing to the global greenhouse effect – a primary concern regarding global warming.
Noncombustive heat engines
Main article: heat engine
Some engines convert heat from noncombustive processes into mechanical work, for example a nuclear power plant uses the heat from the nuclear reaction to produce steam and drive a steam engine, or a gas turbine in a rocket engine may be driven by decomposing hydrogen peroxide. Apart from the different energy source, the engine is often engineered much the same as an internal or external combustion engine.Nonthermal chemically powered motor
Nonthermal motors usually are powered by a chemical reaction, but are not heat engines. Examples include:
- Molecular motor - motors found in living things
- Synthetic molecular motor
Electric motor
Main article: electric motor
An electric motor uses electrical energy to produce mechanical energy, usually through the interaction of magnetic fields and current-carrying conductors. The reverse process, producing electrical energy from mechanical energy, is accomplished by a generator or dynamo. Traction motors used on vehicles often perform both tasks. Electric motors can be run as generators and vice versa, although this is not always practical. Electric motors are ubiquitous, being found in applications as diverse as industrial fans, blowers and pumps, machine tools, household appliances, power tools, and disk drives. They may be powered by direct current (for example a battery powered portable device or motor vehicle), or by alternating current from a central electrical distribution grid. The smallest motors may be found in electric wristwatches. Medium-size motors of highly standardized dimensions and characteristics provide convenient mechanical power for industrial uses. The very largest electric motors are used for propulsion of large ships, and for such purposes as pipeline compressors, with ratings in the thousands of kilowatts. Electric motors may be classified by the source of electric power, by their internal construction, and by their application.The physical principle of production of mechanical force by the interactions of an electric current and a magnetic field was known as early as 1821. Electric motors of increasing efficiency were constructed throughout the 19th century, but commercial exploitation of electric motors on a large scale required efficient electrical generators and electrical distribution networks.
To reduce the electric energy consumption from motors and their associated carbon footprints, various regulatory authorities in many countries have introduced and implemented legislation to encourage the manufacture and use of higher efficiency electric motors. A well-designed motor can convert over 90% of its input energy into useful power for decades.[15] When the efficiency of a motor is raised by even a few percentage points, the savings, in kilowatt hours (and therefore in cost), are enormous. The electrical energy efficiency of a typical industrial induction motor can be improved by: 1) reducing the electrical losses in the stator windings (e.g., by increasing the cross-sectional area of the conductor, improving the winding technique, and using materials with higher electrical conductivities, such as copper), 2) reducing the electrical losses in the rotor coil or casting (e.g., by using materials with higher electrical conductivities, such as copper), 3) reducing magnetic losses by using better quality magnetic steel, 4) improving the aerodynamics of motors to reduce mechanical windage losses, 5) improving bearings to reduce friction losses, and 6) minimizing manufacturing tolerances. For further discussion on this subject, see Premium efficiency and Copper in energy efficient motors.)
By convention, electric engine refers to a railroad electric locomotive, rather than an electric motor.
Physically powered motor
Some motors are powered by potential energy, for example some funiculars, gravity plane and ropeway conveyors have used potential energy of water or rocks, and some clocks have a weight that falls under gravity. Other forms of potential energy include compressed gases (such as pneumatic motors), springs (clockwork motors) and elastic bands.
Historic military siege engines included large catapults, trebuchets, and (to some extent) battering rams were powered by potential energy.
Pneumatic motor
Main article: Pneumatic motor
A pneumatic motor is a machine which converts potential energy in the form of compressed air into mechanical work. Pneumatic motors generally convert the compressed air to mechanical work though either linear or rotary motion. Linear motion can come from either a diaphragm or piston actuator, while rotary motion is supplied by either a vane type air motor or piston air motor. Pneumatic motors have found widespread success in the hand-held tool industry and continual attempts are being made to expand their use to the transportation industry. However, pneumatic motors must overcome efficiency deficiencies before being seen as a viable option in the transportation industry.Hydraulic motor
Main article: Hydraulic motor
A hydraulic motor is one that derives its power from a pressurized fluid. This type of engine can be used to move heavy loads or produce motion.[16]Sound levels
In the case of sound levels, engine operation is of greatest impact with respect to mobile sources such as automobiles and trucks. Engine noise is a particularly large component of mobile source noise for vehicles operating at lower speeds, where aerodynamic and tire noise is less significant.[17] Petrol and diesel engines are fitted with mufflers (silencers) to reduce noise.
Efficiency
Main article: Engine efficiency
Depending on the type of engine employed, different rates of efficiency are attained.The energy of traditional heat engine, doing work only one-dimensional in three-dimensional thermal motion, mechanics, 1/3, so the efficiency of heat engine, usually 1/3, 33% = η, the rest of the 2-D, 66%, as uselessthe heat is wasted.[18][19]
I found one successful example of this truth through this blog. I am going to use such information now.
ReplyDeleteThermo Fisher Scientific